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This paper describes how the Fokker-Planck equation and the simulation of stochastic 

trajectories can be used to explain capital accumulation and deforestation process. The 

exploitation of the boundary conditions associated with this equation becomes the main tools of 

the analysis. Use of the Fokker-Planck enables us to construct a deforestation model without 

optimizing a farmer’s consumption behavior. The farmer’s consumption behavior can be treated 

as an arbitrarily determined parameter, by setting a given subsistence level.  
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INTRODUCTION 
 
 
Suppose that we wish to predict future values an economic variable, say a price 

process, based on a set of past and current data. Because of noise, the motion of the 

price process becomes irregular and unpredictable. Consequently, we never are able 

to predict w.p.1 the exact position of the process, even in a not so distant future. While 

econometric modeling can be of aid in this task, more often economist are unable to 

assign the probability density that the price process will fall within a region. The Fokker-

Planck (FP) equation is very useful technique to determine such a probability density. 

 

The FP equation is also a powerful tool for analysts who wish to formulate boundary 

conditions for given stochastic process. To illustrate this, consider an Itô diffusion tX  

taking values in R or Rn. Suppose that we wish to impose a boundary condition on tX  

by restricting the sample space Ω to an interval [xmin, xmax]. If the drift away from the 

boundaries is sufficiently large, then the boundaries are “repelling” in the sense that the 

process tX  will be “repelled” every time the values of tX  almost reach the boundaries. 

Thus, the boundaries are inaccessible because the trajectory of tX  never reach them 

in this case it is imposible to impose boundary conditions on tX . But if say, both the 

drift and diffusion terms of tX  vanish at a given boundary, then the boundary is 

“attracting” or “absorbing”. Consequently, once the process tX  hits the boundary, it will 

stay there unless the drift and/or the diffusion parameters change. It also means that a 

process that starts at the boundary will never reach the interior. 

 

Naturally, the question is then raised as to how SDEs and the FP equation can be used 

to explain the deforestation mechanism. This can be described as follows. Because a 

farmer’s capacity to clear a forest depends on his or her agricultural and/or non-

agricultural income process, the first step needed is to determine an SDE for this 

income process. Using this SDE, one can then employ the FP equation to show that 

without capital accumulation, the income process tends to stay in a absorbing 

boundary below given “target boundary”, beyond which the farmer would be financially 

capable of clearing a forest. In this case, this “target boundary” represents the minimum 

cash capital required to a clear a forest and establish a ladang, as well as to support 

the farmer’s family during the idle period between forest clearing and secondary crop 
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harvests. Because capital accumulation is basically a different income process, one 

may simulate the drift and/or the diffusion parameters to construct an income process 

with or without capital accumulation. For this purpose, the Euler-Maruyama scheme 

can be used to approximate the income process. Thus, for the case of anak ladangs, 

for example, their deforestation behavior can be modeled by determining an SDE and a 

FP equation which show that their income process will not reach the “target boundary” 

before a cash surplus is obtained from cinnamon harvest. 

 

Before proceeding further with the modeling, fundamental concepts of the FP equation 

will be described briefly in the next section1. Readers wishing to know further details 

about the FP equation are referred to inter alia Gardiner (1983), Honerkamp (1994), 

Ottinger (1996) and Risken (1989). 

 

 

THE FOKKER-PLANCK EQUATION 
 

Consider an SDE  

 )1(         ),(),( tttt dBXtdtXtAdX σ+=  

where the drift ),( xtA  is interpreted in the Itô sense, n
t RX ∈ , and tB  is an m-

dimensional Brownian motion. The FP equation for this SDE is 
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where ),( xtp is a probability density, ),( xtSi  a probability current, and TD σσ= . 

 

From the equation (2), one can write the probability current ),( xtSi as 
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In general, a closed form (time dependent) solution for the FP equation can only be 

found in a few cases. For example, in the case where the SDE (1) is linear with additive 
                                                 
1 In probability theory, the PF equation is also known as the Kolmogorov’s forward equation. Because this 
equation has found a wide range of applications in natural science, e.g. in polymer kinetic theory, solid-
state physics, and theoretical biology, it is also known under a number of a different names such as the 
diffusion, the Klein-Kramers or the Smoluchowski equation.  
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noise, that is, when the drift term ),( xtA is at most a polynomial of first degree in x and 

the diffusion term D is dependent of x. For SDEs with multiplicative noise, however, it is 

generally very difficult to find a closed form solution of the FP equation (see Gardiner, 

1983, and Honerkamp, 1994, for further discussions). 

 

One alternative method to find these closed form solutions is to first solve the SDE 

exactly and compute its mean and variance. These mean and variance are then used 

as a basis to solve the FP equation (2). 

 

To illustrate this method, consider the Langevin version of equation: 

tt vdBdtuCudC   )   (-  21t ++= , generalized in the following multi-dimensional case: 
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where ,)(,,)( nnnntn
i tAtX ×× ℜ∈ℜ∈ℜ∈ σ and B(t) is an n-dimensional Brownian 

motion. 

 

The mean value of )(tX i is then given by 
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The readers can easily see that )(tΦ is in fact the fundamental solution of linear SDE 

with additive noise, as shown by equation )(

0 10
01  )(exp, ttut

edssutt −==Φ ∫  for the 1-

dimensional case. 

 

Meanwhile, the general form of the variance of )(tX i is 
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where ).()()( tttD Tσσ= Because X(0) = 0x then .0)0( =Λ  

Proof: See Honerkamp (1994) pp. 256-261 for a proof. 
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The explicit solution of the equation (2) is then 
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where n is the rank of the )(tΛ matrix. 

 

Now, consider the case where both A and D are time-homogeneous. In other words, 

the SDE (1) becomes an Itô diffusion. Provided that 0)( →XE  as ∞→t , one obtains 

the following stationary solution 
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Example 1 (The AR(1) Consumption Process) Suppose that the AR(1) consumption 

process of equation tt vdBdtuCudC   )   (-  21t ++=  can be expressed in the following 

Langevin equation: 
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As the explicit solution of the FP equation for the Langevian equation (11). From this 

solution, we can compute the probability density of the consumption process tC  taking 

a value of, say, c’ at time t’. Meanwhile, the stationary solution for this FP equation is 

given by 
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as .0→−te Note that in this case .2/2 uvstat =Λ  

 

In most cases, however, it is very difficult to find the exact solution of an SDE. As a 

result, the above method of solving the FP equation cannot be applied. Nonetheless, 
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one can still find a closed form stationary solution of the FP equation, without 

necessarily having to find the exact solution of the SDE beforehand. 

 

For a stationary solution ),(xpstat the probability current )(xSstat vanishes in the entire 

sample space. Thus 0)( ≡xSstat  for all x. Equation (3) then becomes 
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To gain intuition, consider first the one-dimensional version of equation (14). 

Multipliying the left-hand side by D(x) / D(y) and rearranging gives 
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Integrating both sides gives 
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Making use of Honerkamp’s (1994) definition of the potential function2 ),(xΨ  take the 

exponent of both sides and rearrange to have 
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where N is a normalization factor. Taking logarithm of the two right-hand side term of 

equation (17) and rearranging gives the potential 
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where ).()(2
1

xxD σ=  Replacing the Itô drift term in equations (14) to (18) by the drift 

term (19) gives the following Stratonovich interpretation of the stationary solution: 

                                                 
2 See equation (9.4.6) of Honerkamp (1994) 
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The Stratonovich potential is given by 
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Combining equations (18) and (21), one obtains 
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where m = 2 for the Itô interpretaion and m = 1 for its Stratonovich counterpart. The 

extrema of )(xΨ are then given by 
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For the multi-dimensional case, the probability current (equation 3) does not generally 

vanish in the stationary state (Risken, 1989). Consequently, the stationary solution for 

a multi-dimensional case is not a straigtforward extention of its one-dimensional 

counterpart. Only under a certain condition of the potential function does the probability 

current vanish. Honerkamp (1994) and Risken (1989) show that this condition is 
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provided that the matrix D(x) has an inverse everwhere. Equation (24) implies that 

kΖ is the gradient of the potential Ψ, which is given by 
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One then obtains the stationary density 
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Now consider a region .],[ maxmin
nℜ∈= xxV  Using the potential function )(xΨ , the 

boundary conditions for the FP equation can be stated as follows (Risken, 1989): 

• If goes to an (infinite) high positive value at ,maxxx = the process is never allowed 

to enter the region .maxxx > It means, there is no current accross V∂  

at maxxx = and the probability current S(x) vanishes at this point. Consequently, the 

upper bound maxxx = acts as repelling boundary. A similiar rule applies for 

.minxx =  

• If )(xΨ  falls to an (infinite) high negative value at ,maxxx = then peΨ vanishes at 

this point. In this case we have an absorbing boundary at ,maxxx = and again, a 

similar rule applies for .minxx =  

 

From these boundary conditions, one has four boundary possibilities for the region V, 

that is, 

• Both minx and maxx are repelling boundaries, 

• Both minx and maxx are absorbing boundaries, 

• minx and maxx are repelling and absorbing boundaries, respectively, and vice versa. 

 

 

THE FOKKER-PLANCK EQUATION FOR DEFORESTATION 
 

The Model 
 

In this subsection, the FP equation for farmer’s deforestation behavior is modeled. The 

representative farmer is treated as a producing and consuming agent simultaneously. 

To begin, let 

)28(              21 ttt XXX +=  

be the farmer’s (discrete) cash on hand, where tX 1 represents financial assets 

consisting mostly of cash saving3 and tX 2  represents stochastic income form farm 

                                                 
3 A small number of farmers may keep a rural bank account and/or a set of jewelry as their financial 
assets. However, such a case is not a common one in the the study area.  
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production and/or working as wage laborer. Once realized, Xt is allocated into 

consumption ttt XuC 1= , income-generating expenses ttt XuQ 2= , and forest clearing 

expenses ttt XuL 3= . Note here that tQ does not include land acquisition expenses, but 

it includes expenditure such as work related traveling expenses and purchases of farm 

inputs and equipment. Also note that 0=tL  if QCBXX t ++=< , where B is 

minimum cash capital required to clear a forest and establish a ladang, tCC ≤  is 

consumption at the subsistence level, and tQQ ≤  the minimum level of income-

generating expenses. For simplicity, the components of the “target boundary” tX~  are 

assumed to be time-independent and given. Finally, it is assumed that stockpiles of 

grain and non-edible farms produces are considered as imputed X2t valued at the farm-

gate price. So are portions of farm outputs consumed by the farmer’s own family. 

 

Let ∑ =
=

3

1i itt uθ . The income residual (or saving) tX~  is then given by ttt XQX )1(~ −=  

where ]1,0(∈tθ . Because the rural financial sector in the study area is relatively under-

developed (compared to its urban counterpart), farmers usually keep their income 

residual at home as a cash saving. Thus, the saving attracts no interest revenues. For 

analytical convenience, however, a non-stochastic return r ≥ 0 on the financial assets is 

assumed. 

 

Following Deaton (1992), the financial asset tX 1 evolves according to the discrete 

process 
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Rearranging and letting 1=∆t , one obtains: 
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From Euler-Maruyama scheme we know that equation (30) corresponds to a 

continuous function 
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where ),( 1tXtf  is a function and tdB1  is one-dimensional Wiener process 

representating stochastic r. Because r is non-stochastic, then 0),( 11 =tt dBXtf . 

 

Assuming time-homogeneous ui, the income process tX 2  can be interpreted as an Itô 

diffusion. One reasonable approach to constructing the process tX 2  is by assuming 

that it depends on u2
4 and the stochasticity of farm income and rural employment 

opportunities5. Because the majority of rural employment opportunities come from the 

agricultural sector, its stochasticity is assumed to be represented b the governing the 

farm income process. Thus, we have a one-dimesional Wiener process Bt 

representating the farmer’s stochastic income.  

 

Now consider the logistic model 
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as a parameterization of the income process X2t, where K and α are the carrying 

capacity and the diffusion parameter, respectively. One advantages of the logistic 

model is that it does not allow the income process to grow indefinitely, which would be 

the case had a linear model been adopted. Instead, the process is limited by carrying 

capacity K, which can be associated with natural constraints such as limited soil 

nutrient supply and the fact that different crops and crop varieties have different 

income-generating capacities. It is this carrying capacity that will be exploited further in 

the later part of this modeling. 

 

Because ttt dXdXdX 21 += , where tX 1  and tX 2  can be written as 

ttt XrX )1)(1(1 θ−+=  and ttttt XrXXX )]1)(1(1[12 θ−+−=−= , respectively, we then 

have 
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where a= )1,0(2 ∈u , Kub θ2= , αθ=g , Kh 2αθ= and )1)(1(1 θθ −+−= r . If  b = 

1 and h = 0, equation (7) reduces to the (stochastic) multiplicative Verhulst model, 

whose exact solution is given by6 

                                                 
4 This assumption represent the production side of the model. 
5 It may result from uncertain weather and output prices. 
6 See Kloeden and Platen (1992) pp. 124-125. 



 11

∫ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟

⎠
⎞

⎜
⎝
⎛ −+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟

⎠
⎞

⎜
⎝
⎛ −

=
t

s

t

t

dsgBsgaX

gBtgaX
X

0

2
0

2
0

2
1exp1

2
1exp

.                             (34) 

Now rewrite equation (33) as 

,)()( tttt dBXdtXAdX σ+=                                      (35) 

where 2)( ttt bXaXXA −=  and 
2)( ttt hXgXX −=σ . Applying the FP equation (2) 

and recalling that differential operators act on A(x), σ2(x) and p(t,x) we have 
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where the subscripts denote partial differential operators w.r.t. the subscripted 

argument, with A = ax – bx2, Ax = a – 2bx, σ = gx – hx2, σx = g-2hx, σxx = 2h and σ2 =(gx 

- hx2)2. Thus, the FP equation (36) takes the form of second-order linear homogeneous 

partial differential equation (PDE)7 which is uniformly parabolic on x. 

 

In general, it is difficult to find an explicit solution for thee FP equation (36). Because 

this modeling aims at explaining deforestation behavior, not at finding exact solutions of 

the SDE (33) and he FP equation (36) as such, this route of solving for p(t,x) is not 

adopted for time-efficiency reason. Instead, the stationary solutions of the problem will 

be determined. 

 

Taking the Itô interpretation of equation (22), one obtains the potential 
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Thus for 0≠h and hgx /≠ we have 
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as the potential function for the generalized Velhust model of equation (33). However, 

because in this study the parameters a, b, g and h are specified in such a way that 

                                                 
7 See, for example, Stephenson (1996) for detailed description of PDEs 
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0)( =− ghbgah , the last term equation (39) can be eliminated. Hence, the potential 

function for this study’s FP modeling is given by 
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which can be simplified into 
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because abgh = . 

 

The logarithmic terms of this equation indicate that at x = 0 and x = a/b = K/θ  the 

potential function is asymptotic. They also make ψ(x) not applicable for the regions of x 

< 0 and x > a/b = K/θ . Because of these restrictions, especially the former one, one 

may think that the Verhulst model used here fails to accommodate the case where at 

some points of time the economic agent is a net borrower. Such an interpretation is 

however incorrect. The model can still accommodate borrowing, for example, by adding 

a net borrowing variable into equation (28) or (29)8. From here, we can proceed with 

the technical procedures described above. 

 

With equation (40) as the potential function, the stationary density function is given by 

21 ))1(()( zz
stat x

a
bgNxxp −=                                           (41) 

where N is normalized into unity, )1(2 2
1 −= gaz  and )1(2 2

2 +−= gaz . 

 

We can easily see that z2 always takes a negative value, regardless of the ratio 

between a and g2. However, such a consistency is not applicable for z1, because z1 has 

a positive value if a > g2 and a negative value if a < g2. A zero valued z1 is obtained if a 

= g2. Consequently, depending on whether the ratio between a and g2 is greater or less 

than unity, different functional forms for pstat(x) will be obtained. It means, the ratio 

determines the transition of pstat(x), by which the condition a = g2 separates the two 

regimes of z1 term. 

 

                                                 
8 A similar strategy has been adopted by Hubbart et. al. (1995) in their study of precautionary saving and 
social insurance. 
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This transition of the density function has a significant impact on the derivation of the 

boundary conditions. To see this, let us first determine the extrema of the stationary 

solution. By applying equation (23), we have 

0)2)(()( 22 =−−−− hxghxgxbxax                                  (42) 

Because h=bg/a, we can simplify equation (7.42) into 
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and obtain the following extrema 
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where at ẋ1 and ẋ3 the potential function is asymptotic. 

 

Now take for example the case of  ẋ1 ↓ 0 is always a minimum, making it a candidate 

for an absorbing boundary. On the contrary, if a > g2, the extremum ẋ1 ↓ 0 is a 

maximum. Consequently, this extremum represents a possible repelling boundary. 

 

An evaluation of the value of ψ(x) around ẋ1 ↓ 0, however, shows that the boundary 

conditions at this extremum also depend on the magnitude of the ratio a/g2, not only on 

whether a is greater or less than g2. As can be seen from Table 1, for both the a > g2 

and a < g2 cases, the potential function goes to a larger positive or negative value, 

respectively, if the difference between a and g2 is larger. This means, the greater is the 

deviation between a and g2, the bigger is the likelihood that ẋ1 ↓ 0 becomes a repelling 

or absorbing boundary. 

 

To have a better idea of how the transition of the density function affects the boundary 

conditions, some plots of the potential function are represented in Figure 1. Here the 

values of α = 0.5 and θ = 0.95, resulting in g2 = 0.2256. Assuming that K = 5, the a > g2 

and a < g2 cases are represented by a = 0.3 and a = 0.2, respectively. Note here that 

the ratio of a/g2 is chosen in such a way that the plots of the potential function for both 

the a > g2 and a < g2 cases can be put together in one figure. The plot for the a = g2 

case is also presented in Figure 1. 

We can see from Figure 1 that the transition is particularly important for the boundary 

condition at  ẋ1 ↓ 0. With the aid of Table 1, it can be inferred from this figure that if g2 is 

sufficiently larger than a, the potential function ψ(x) will slowly go to a large negative 
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value. Thus, as g2 increases relative to a, the extremum ẋ1 ↓ 0 is increasingly likely to 

become an absorbing boundary. On the contrary for the a > g2 case, the potential goes 

more rapidly to a large positive value at this extremum. It means, this extramum 

becomes a repelling boundary. 

 

Figure 1 also shows that potential function approaches negative infinity exponentially 

rapidly at ẋ3 ↑ (a/b), regarless of the value of a and g2. This means, the extremum  ẋ ↑ 

(a/b) is “naturally” absorbing boundary, no matter whether a is larger or less than g2. 

Finally, Figure 1 shows that extremum ẋ2 is a local minimum. Consequently, this 

extremum imposes no boundary conditions for the process Xt.  
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Figure 1. Some Plots of the Potential Function 

 

Having established the boundary conditions for Xt, we can now proceed with numerical 

simulations of the process trajectories and see under what conditions Xt exceeds the 

target boundary X . In these simulations, the Euler Maruyama scheme is employed 

and the data reported in Wibowo, D.H., Tisdell, C.A. and Byron, R.N. (1997) are used. 

For brevity reasons, however, only simulations that use the upper Kerinci data are 

presented. The same simulations can be easily repeated for lower Kerinci region. 
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Numerical Simulations 
 
Now consider the case of an anak ladang in the upper Kerinci region. Assuming a time 

unit of “a month”9, at the current average size of land operated we have a monthly 

output value of around, roughly, Rp. 200,075.0010. This value is used as the basis for 

normalizing the other monetary measurements, such as the “target boundary” X  and 

carrying capacity K. Using table 1 and 2 of appendix, one obtain a rough estimate of u1 

= 0.40 and u2 = a = 0.57, resulting in (1-θ )= 0.03 and θ = 0.97. Here an r = 0.05 has 

been assumed in the calculation of θ11. 

 

                                                 
9 This time unit is chosen for convenience only. One may prefer to use other time units such as a week, a 
season or a year.  
10 See Table 1 of Appendix  
11 This assumption is made based on the level of interest rate paid by state-owned banks on rural saving 
accounts prior to the economic crisis.  

a saving alpha g^2

0.6 0.03 0.20 0.04 1.E+04
0.6 0.03 0.01 0.00 4.E+06
0.6 0.05 0.20 0.04 1.E+04
0.6 0.05 0.01 0.00 5.E+06

0.7 0.03 0.20 2.11 1.E+04
0.7 0.03 0.01 23.45 5.E+06
0.7 0.05 0.20 2.02 1.E+04
0.7 0.05 0.01 22.44 5.E+06

0.6 0.03 1.50 2.11 -5.E+02
0.6 0.03 5.00 23.45 -7.E+02
0.6 0.05 1.50 2.02 -5.E+02
0.6 0.05 5.00 22.44 -7.E+02

0.7 0.03 1.50 2.11 -5.E+02
0.7 0.03 5.00 23.45 -7.E+02
0.7 0.05 1.50 2.02 -5.E+02
0.7 0.05 5.00 22.44 -7.E+02

Notes :
x = 1.E-305
r = 0.05 
K = 5

Potential

Tabel 1. Evaluating of the Values of the Potential Function at the Lower Boundary 
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Furthermore, if we take the amount of living allowance provided by landowners12 as the 

subsistence level, we then have C = Rp. 53,500.00 before normalization. In the case it 

has been conservatively assumed that the farmer only needs to have a cash advance 

to support his or her family during the first month of the idle period, that is, the period 

between forest clearing and the first harvest of the annual crop. Because the minimum 

size of forest cleared by the respondents in a one round of clearing is 0.45 hectare, 

while the minimum capital required for forest clearing and ladang establishment is Rp. 

750,000.00/hectare, we have B = 337,500.00. Assuming that the monetary value of Q  

is set at Rp. 111,130.00, that is, the minimum amount of cash capital needed to begin 

potato farming, the value of X  is then = Rp. 502,180.00. After normalization, we have 

X  = 2.51. Moreover, because the maximum of the potato yield data is 1.175 times the 

average figures reported in table 3 of appendix, whereas the highest level of farm-gate 

price for potato, under normal condition13, was in the order of 1.15 times the average 

prices, K is then assumed to take the value of 1.175 x 1.15 = 1.35. This value 

represents the carrying capacity of the Xt process without capital accumulation via 

cinnamon plantation. Finally, the initial value X0 is assumed to be 0.56, which is equal 

to Q . Thus, the farmer is assumed to have enough cash capital to begin potato 

farming14. 

 

From the boundary conditions at ẋ3, it is very straightforward to see that the process Xt 

never move beyond the boundary ẋ3=1.39. It means, once the process reaches ẋ3, if it 

ever reaches this extremum, the process will be absorbed in this boundary. In other 

words, because at K=1.35 the process Xt never come closer to the “target boundary” 

X = 2.51, hence the anak ladang in question never have the financial capacity to clear 

a forest. 

 

This intuitive analysis, however, does not explain how Xt fluctuates and reaches the 

boundaries, especially the “target boundary”. For this reason, Figure 2 to 4 are 

presented15. In Figure 2 the trajectories of Xt are shown to be fluctuating inside the 

                                                 
12 This is the living allowance specified under the 1:2 sharecropping contract. 
13 That is, prior to the economic crisis 
14 Note that the issue of where this initial capital comes from it is not of concern here. Thus, the capital may 
originate from inside or outside the agricultural sector, either from the farmer’s own resources and/or from 
the landowner’s.   
15 Note that in these figures the numerics on the “time” axis does not necessarily represent the “time unit” 
used in the text, that is, a month. One may interpret each numerics as, say, a “year” or a “season”, and 
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lower interior at the earlier stages of the process. However, because for the a > g2 case 

the extremum ẋ1 is a repelling boundary, the process Xt will not collapse into a zero 

value. Instead, the process can quickly gain momentum to move into the upper interior 

and stays at the absorbing boundary of ẋ3 ↑ (K/θ). A similar pattern is also observed for 

the a = g2 case presented in Figure 3. 

 

 
 

Figure 2. Some trajectories of Xt for the a > g2 case without capital accumulation, 
where α = 0.75 

 

                                                                                                                                               
obtain the necessary intervals for the time used. For example, if the numerics is interpreted as a “year”, 
then the “month” is represented by 1/12 of each interval (say, between 0 and 1) in the “time” axis. 
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Figure 3. Some trajectories of Xt for the a = g2 case without capital accumulation, 
where α = 0.78 

 

For the a < g2 case, provided that g2 is not sufficiently larger than a, the process can 

still reach the upper absorbing boundary. Nonetheless, compared to the a  > g2 and a  

= g2 cases, the process takes a relatively longer time at the lower interior, before 

gaining necessary strength to move up to the upper boundary. This pattern can be 

seen in figure 4. The level of uncertainty caused by g2, which is due mostly to the high 

value of the diffusion parameter α, is the reason behind this pattern. 

 

If, however, value of g2 is sufficiently larger than that of a, the extremum ẋ1 may then 

become a (lower) absorbing boundary. Consequently, the process Xt may collapse into 

a zero value unless the initial value is sufficiently large to prevent such a collapse. 

These cases are represented in Figure 5, where it is shown that if X0 is set at some 

larger number, say X0 = 0.9, then the process Xt may have the strength to eventually 

reach the upper boundary. Nonetheless, even at this larger X0, there is still a chance 

that the process collapses to a zero value. 

 

The next question is then of how the process can break the boundary ẋ3=1.39 and 

moves to the “target boundary” X = 2.51. Because ẋ3 is an absorbing boundary, 

changing the parameters a, α and θ will not carry Xt into regions above the boundary. 

Thus, it is only the carrying capacity K that is capable of doing so. In this case, a farmer 
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might increase the value of K by, say, increasing the size of land operated and/or 

adopting a multicropping system. These ways of increasing K are in fact the ones 

adopted by farmers in the study area16. As discussed before, multicropping involving 

cinnamon and potato is the most popular farming system found in a ladang.  

 

Also, anak ladangs usually operate another ladang once annual crops can no longer be 

planted on the previous ladang due to shading by cinnamon tress. As a result, the anak 

ladangs still obtain income from potato during this period17. While at the same time 

waiting for a “lump sum” to be received when cinnamon tress from the previous ladang 

are harvested. In other words, the process of capital accumulation (as represented by 

cinnamon plantation) provides additional income for the farmers, and thus, increases 

the value of K. Because the amount of the lump sum is 2.26 larger than the potato 

income, by conservatively ignoring additional income that may result from possible 

increases in cinnamon price, one has K = 2.26 x 1.35 = 3.05. This value of K 

represents the upper absorbing boundary. 

 

 
 

Figure 4. Some trajectories of Xt for the a < g2 case without capital accumulation, 
where α = 1.5 

 

                                                 
16 Of course there are other means of doing so. For example, the farmer may adopt a more technologically 
intensive production system, switch into a more profitable crop(s). and/or improves his or her marketing 
and pricing strategies. But these alternatives are not commonly adopted in the study area.  
17 That is, from potato planted on the other ladang.  
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Figure 5. Some trajectories of Xt for the a < g2 case without capital accumulation, 
where α = 2.5. The existence of two absorbing boundaries at x = 0 and x = K/θ causes 

some trajectories to collapse into zero value, while some others reach the upper 
absorbing boundary 

 
 

The results of the simulation are presented in Table 2 and Figures 6 to 9. For the a > g2 

and a = g2 cases (i.e. cases #1 and #2 in Table 2), it can be seen easily from Figure 6 

that Xt will eventually pass the “target boundary” X = 2.51 and stays at the absorbing 

boundary ẋ3=3.14. This is despite the fact that initial value X0 and the saving parameter 

(1-θ ) are set at a relatively low value. Thus, under these conditions the farmer is able 

to obtain enough cash capital to clear a forest, despite his or her low initial capital and 

saving level. 

 

Now let us evaluate the more interesting case of a < g2. Case #3 in Table 2 and Figure 

7 is in fact the capital accumulation version of the case depicted in Figure 4. In the 

former, with a higher value of K, it is shown that with a lower value of K, the process Xt 

can gain enough strength to reach the upper absorbing boundary ẋ3. Because the value 

of ẋ3 in Figure 7 is 3.14, while in Figure 4 we have ẋ3 = 1.39, this result indicates that 

increasing the value of K brings with it a higher risk for Xt to collapse into a zero value. 

This is because with it a lower K (and hence a lower ẋ3), it is much easier for Xt to 

reach the upper absorbing boundary. With a higher K, however, the process fluctuates 

longer in the interior and may not have enough strength to reach ẋ3. The uncertainty 

represented by g2 can then force the process to fall into the lower absorbing boundary. 

 

If, however, the farmer increases his or her saving level, the process Xt may have 

enough strength to reach both the target boundary of X = 2.51 and the upper 
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absorbing boundary of ẋ3 = 3.14. This result comes from the fact that given a constant r, 

increasing the saving parameter (1-θ ) reduces the value of θ, which in turn lowers 

that of g2. As it decreases, g2 becomes not sufficiently large to induce Xt to collapse into 

the lower absorbing boundary. To give example of this result, case #4 is presented on 

the right-hand side of Figure 7, where the saving parameter (1-θ ) has been set at a 

10 percent level. 

 

Nonetheless, with increased uncertainty, the results can be significantly different. This 

condition is represented by cases #5 to #8, where a higher diffusion parameter α = 2.5 

is assumed. As can be seen from Figures 8 and 9, the process Xt still collapses even 

though the initial value X0 and/or the saving parameter (1-θ ) are increased. In case 

#8, for example, having a relatively high X0 = 2.00 and (1-θ ) =0.10 still fails to prevent 

the process from falling into a zero value. This result implies that higher initial value 

and/or saving level can only sufficiently large. Finally, Figure 8 also highlights the risk 

associated with increased K value, which can be seen by comparing case #5 in this 

figure with the results of Figure 5. 

 

 Table 2.  Simulations of Xt 
 

Cases Results 

1. a > g2,  a = 0.57,  g2  = 0.53,  (1-θ ) = 0.03, θ  = 
0.97,  α = 0.75,  X0 = 0.56

X reached 

2. a = g2,  a = 0.57,  g2  = 0.57,  (1-θ ) = 0.03, θ  = 
0.97,  α = 0.78,  X0 = 0.56 

X reached 

3. a < g2,  a = 0.57,  g2  = 2.12,  (1-θ ) = 0.03, θ  = 
0.97,  α = 1.50,  X0 = 0.56 

Xt collapses 

4. a < g2,  a = 0.57,  g2  = 1.80,  (1-θ ) = 0.10, θ  = 
0.895, α = 1.50,  X0 = 0.56

X reached 

5. a < g2,  a = 0.57,  g2  = 5.88,  (1-θ ) = 0.03, θ  = 
0.97,  α = 2.50,  X0 = 0.90 

Xt collapses 

6. a < g2,  a = 0.57,  g2  = 5.00,  (1-θ ) = 0.10, θ  = 
0.895,  α = 2.50,  X0 = 0.90 

Xt collapses 

7. a < g2,  a = 0.57,  g2  = 5.88,  (1-θ ) = 0.03, θ  = 
0.97,  α = 2.50,  X0 = 2.00

Xt collapses 

8. a < g2,  a = 0.57,  g2  = 5.00,  (1-θ ) = 0.10, θ  = 
0.895,  α = 2.50,  X0 = 2.00 

Xt collapses 

 



 22

       
 

Figure 6. Some trajectories of Xt with capital accumulation. On the left hand side case 
#1, while on the right hand side is case #2. See Table 2. 

 
 
 

     
 

Figure 7. Some trajectories of Xt with capital accumulation. On the left hand side case 
#3, while on the right hand side is case #4. See Table 2. 

 
 

       
 

Figure 8. Some trajectories of Xt with capital accumulation. On the left hand side case 
#5, while on the right hand side is case #6. See Table 2. 
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Figure 9. Some trajectories of Xt with capital accumulation. On the left hand side case 
#7, while on the right hand side is case #8. See Table 2 

 

 

DISCUSSION 
 
Compared to the deterministic approach used in Wibowo, D.H., Tisdell, C.A. and 

Byron, R.N. (1997), the above modeling provides further insights into farmer’s capital 

accumulation behavior leads to forest clearing, if uncertainty is taken into account. It is 

shown that capital accumulation in the form of cinnamon plantation always results in 

farmers having adequate cash capital to clear a forest. In this Fokker-Planck modeling, 

however, such is not always the case. If the income process of the representative anak 

ladang follows the generalized Verhulst model, then only under certain conditions does 

capital accumulation give farmers a financial capability to clear a forest. 

 

The first condition is that income uncertainty needs to be smaller than or equal to the 

proportion of cash on hand allocated into income-generating activities. Formally, this 

condition is represented by the a ≥ g2 case. As can be seen from Table 2 and Figure 6, 

the representative farmer is shown to be able to obtain adequate cash to clear a forest 

and establish a ladang. Nonetheless, Figure 6 also shown that some trajectories of the 

process Xt take longer than other trajectories does in reaching the “target boundary”. If 

this result is generalized into the case of different individuals, it can be inferred that 

even with the same level of a and g2, some farmers may reach the “target boundary” 

quicker than others due to the randomness of their income process. 

 

Secondly, if the level of income uncertainty is such that it exceeds the proportion of 

cash on hand allocated into income-generating activities, then it is more likely than not 
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that the representative farmer fails to reach the “target boundary”. In this case the 

farmer can still gain enough cash capital to clear a forest if his or her saving level is 

sufficiently high and the level of income uncertainty large. This condition is depicted by 

case #4 in Table 2 and Figure 7. 

 

Nonetheless, if the level of uncertainty is sufficiently large, which in this simulation is 

represented by α = 2.5, the farmer in question tends to fail to read the “target 

boundary”. This means, the farmer will not have enough cash capital to clear a forest, 

even if his or her initial capital and/or saving level are increased significantly. In this 

simulation, increasing the initial capital by 3.57 times and the saving level by 3.33 times 

still fails to give the farmer necessary cash capital to clear forest and establish a 

ladang.  Simulations of this are given by cases #5 to #8 in Table 2 and Figures 8 and 9. 

 

The results also show that, regardless of the level of uncertainty, without capital 

accumulation the representative farmer cannot have adequate cash capital to clear 

forest. However, if the level of uncertainty is sufficiently larger than the proportion of 

cash on hand allocated into income-generating activities, the farmers may go bankrupt 

unless his or her initial capital is sufficiently large to prevent such a case from 

happening. 

 

Another important result is that increasing the carrying capacity K by, for example, 

adopting a multi cropping system brings with it increased risks that the farmer’s income 

may collapse into a zero value. This is because a higher level of K, the income process 

does not have necessary strength to weather the “turbulence” of income uncertainty 

and reach the “safe” upper absorbing boundary. This result represents the fundamental 

rule of risky portfolios, that is, increased expected pay-offs are often associated with 

higher risks. 

 

The model also sheds some light into how saving can be used as a precautionary 

means to cushion against uncertainty. With the absence of an agricultural insurance 

scheme, farmers can do little to reduce the uncertainty parameter α. However, to some 

degrees farmers can minimize g2 by increasing their saving level. With reduced g2, the 

probability of falling into the zero boundary also declines. Thus, increased saving can 

reduce the likelihood of farmers going bankrupt. As discussed earlier, however, higher 
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saving level can become an effective cushion against uncertainty only if the uncertainty 

itself is not very large. 

 

 

CONCLUSION 
 
This chapter has shown how the Fokker-Planck equation and the simulation of 

stochastic trajectories can be used to explain capital accumulation and deforestation 

process. It is the exploitation of the boundary conditions associated with this equation 

that becomes the main tools in this analysis. However, use of the Fokker-Planck 

equation also gives a practical advantage in the sense that one can still construct a 

deforestation model even without optimizing the representative farmer’s consumption 

behavior. The farmer’s consumption behavior can also be treated as an arbitrarily 

determined parameter, for example by setting a given subsistence level. Thus, 

consumption optimization still provides many useful insights into deforestation 

behavior, such as how precautionary motives and preferences over farming land affect 

deforestation decisions.  
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APPENDIX 
 
 
Table 1. Distribution of Financial Returns Between Landowners and Anak Ladang from a Multicropping of Cinnamon and Potato 

(Rp/hectares) Upper kerinci Region, Indonesia. 
 

 

 

 

Year 1 2 3 4 5 6 7 8 9 10 11 12 
Flow for landowner             
(1:1 system)             
 Farm inputs -205,400 0 0 0 0 0 0 0 0 0 0 0 

 
Living allowance for anak 
ladang 0 0 0 0 0 0 0 0 0 0 0 0 

 Value of potato share 0 0 0 0 0 0 0 0 0 0 0 0 

 
Value of cinnamon share (one-
half) 0 0 0 155,787 246,438 396,221 0 0 0 0 0 9,157,229 

 net flow -205,400 0 0 155,787 246,438 396,221 0 0 0 0 0 9,157,229 
Financial Flow for Anak Ladang             
 Farm inputs -5,556,343 -5,556,343 -5,556,343 -5,556,343 -5,556,343 -2,778,172 0 0 0 0 0 0 
 Value of potato share (100%) 9,605,628 9,605,628 9,605,628 9,605,628 9,605,628 4,802,814 0 0 0 0 0 0 

 
Value of cinnamon share (one-
half) 0 0 0 155,787 246,438 396,221 0 0 0 0 0 9,157,229 

  net flow 4,049,285 4,049,285 4,049,285 4,205,072 4,295,722 2,420,864 0 0 0 0 0 9,157,229 
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Table 2. Average Monthly Consumption of Anak Ladang a) 

 

  Upper Region Lower Region 
    Rp Share Rp Share 
A. Cash Expenses  
 Staple food 33,182 37% 38,833 30% 

 
Other foods and 
beverages 22,091 25% 29,305 22% 

 Sub Total     
 Other cash expenses b) 25,455 29% 45,403 35% 
 Total cash expenses 80,727 91% 113,541 86% 
      
B. Consumption of own products    
 Staple food 6,545 7% 6,909 5% 

 
Other foods and 
beverages 1,530 2% 11,046 8% 

 Total 8,075 9% 17,955 14% 
      
C. Total monthly consumption 88,803 100% 131,496 100% 
      
Notes: a) Unusual big expenses such as wedding and purchase of a house  
                or a motorcycle are not included    
            b) They include expenses for clothing, non-work related transports,  
                 kerosene, cigarettes, sanitary needs etc.   
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Table 3. Inputs and Output of a Hectare of Potato per Season under a Multicropping 
with Cinnamon, Upper Kerinci Region, Indonesia.  

 

  Quantity Price 
(Rupiah) Total (Rupiah) 

A. Seeds (kgs) 874 670 585,826 
     
B. Fertilisers (kgs)    
 Urea (Nitrogen) 257 290 74,578 
 TSP (Phosphate) 514 450 231,450 
     
C. Pesticides/Insecticides    
 Mixture (times of spraying) 57 17,000 961,803 
     
D. Transport Costs    
 Fertiliser delivery 15 2,250 34,718 
 Output delivery 129 5,000 642,917 
     
E. Family Labour (days) a) 175 0 0 
     
F. Hired Labour (days) 62 4,000 246,880 
     

G. 
Total financial costs 
(A+B+C+D+F)   2,778,172 

     
H. Output    
 Large Size (SP quality) 7,540 546 4,116,909 
 Medium Size (AB quality) 1,594 375 597,913 
 Small Size (M quality) 468 188 87,992 
     
 Total output value 9,603  4,802,814 
     
G. Financial surplus (H-G)   2,024,642 
     
     
  Notes :       
 a)  For potato farming, non-harvesting and harvesting wages are equal. 
 Thus, no distinction is made between non-harvesting and hervesting labourers 

 


